
1

An Overview of Trilinos

Michael A. Heroux

 Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

SAND 2009-3732P

2

Outline of Talk

Background / Motivation / Evolution.

Trilinos Package Concepts.

Whirlwind Tour of Trilinos Packages.

Getting Started.

Solver Collaborations: ANAs, LALs and APPs.

Concluding remarks.

Hands On Tutorial

Trilinos Contributors
Chris Baker

Ross Bartlett

Pavel Bochev

Paul Boggs

Erik Boman

Cedric Chevalier

Todd Coffey

Eric Cyr

David Day

Karen Devine

Clark Dohrmann

Kelly Fermoyle

David Gay

Mike Heroux

Ulrich Hetmaniuk

Robert Hoekstra

Russell Hooper

Vicki Howle

Jonathan Hu

Joe Kotulski

Rich Lehoucq

Kevin Long

Kurtis Nusbaum

Roger Pawlowski

Brent Perschbacher

Eric Phipps

Lee Ann Riesen

Marzio Sala

Andrew Salinger

Chris Siefert

Bill Spotz

Heidi Thornquist

Ray Tuminaro

Jim Willenbring

Alan Williams

Past Contributors

Jason Cross

Michael Gee

Esteban Guillen

Bob Heaphy

Kris Kampshoff

Ian Karlin

Sarah Knepper

Tammy Kolda

Joe Outzen

Mike Phenow

Paul Sexton

Bob Shuttleworth

Ken Stanley

Background/Motivation

Target Problems: PDES and more…

PDES

Circuits

Inhomogeneous

Fluids

And More…

Target Platforms: Any and All
(Now and in the Future)

Desktop: Development and more…

Capability machines:

Redstorm (XT3), JaguarPF (XT5), Clusters

Roadrunner (Cell-based).

Multicore nodes.

Parallel software environments:
MPI of course.

threads, vectors, CUDA OpenCL, …

Combinations of the above.

User “skins”:
C++/C, Python

Fortran.

Web, CCA.

7

Evolving Trilinos Solution

Numerical math
Convert to models that
can be solved on digital

computers

Algorithms
Find faster and more
efficient ways to solve

numerical models

L(u)=f
Math. model

Lh(uh)=fh
Numerical model

uh=Lh
-1 fh

Algorithms

physics

computation

Linear

Nonlinear

Eigenvalues
Optimization

Automatic diff.

Domain dec.

Mortar methods

Time domain

Space domain

Petra

Utilities

Interfaces
Load Balancing

solvers

discretizations methods

core

Beyond a “solvers” framework

Natural expansion of capabilities to satisfy

application and research needs

Discretization methods, AD, Mortar methods, …

Trilinos Package Summary
http://trilinos.sandia.gov

Objective Package(s)

Discretizations
Meshing & Spatial Discretizations phdMesh, Intrepid, Pamgen, Sundance, ITAPS

Time Integration Rythmos

Methods
Automatic Differentiation Sacado

Mortar Methods Moertel

Services

Linear algebra objects Epetra, Jpetra, Tpetra, Kokkos

Interfaces Thyra, Stratimikos, RTOp, FEI, Shards

Load Balancing Zoltan, Isorropia

“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika

C++ utilities, I/O, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx

Solvers

Iterative (Krylov) linear solvers AztecOO, Belos, Komplex

Direct sparse linear solvers Amesos

Direct dense linear solvers Epetra, Teuchos, Pliris

Iterative eigenvalue solvers Anasazi, Rbgen

ILU-type preconditioners AztecOO, IFPACK, Tifpack

Multilevel preconditioners ML, CLAPS

Block preconditioners Meros

Nonlinear system solvers NOX, LOCA

Optimization (SAND) MOOCHO, Aristos, TriKota, Globipack, Optipack

Stochastic PDEs Stokhos

Capability Leaders:

Layer of Proactive Leadership

Areas:

Framework, Tools & Interfaces (J. Willenbring).

Software Engineering Technologies and Integration (R. Bartlett).

Discretizations (P. Bochev).

Geometry, Meshing & Load Balancing (K. Devine).

Scalable Linear Algebra (M. Heroux).

Linear & Eigen Solvers (J. Hu).

Nonlinear, Transient & Optimization Solvers (A. Salinger).

Each leader provides strategic direction across all Trilinos packages

within area.

10

Package Concepts

11

Interoperability vs. Dependence

 (“Can Use”) (“Depends On”)

Although most Trilinos packages have no explicit
dependence, often packages must interact with some other
packages:

NOX needs operator, vector and linear solver objects.

AztecOO needs preconditioner, matrix, operator and vector objects.

Interoperability is enabled at configure time. For example, NOX:

--enable-nox-lapack compile NOX lapack interface libraries

--enable-nox-epetra compile NOX epetra interface libraries

--enable-nox-petsc compile NOX petsc interface libraries

Trilinos cmake system is vehicle for:
Establishing interoperability of Trilinos components…

Without compromising individual package autonomy.

12

Trilinos Interoperability Mechanisms
(Acquired as Package Matures)

Package builds under Trilinos

configure scripts.

Package can be built as part of a
suite of packages; cross-package
interfaces enable/disable
automatically

Package accepts user data as

Epetra or Thyra objects

Applications using Epetra/Thyra
can use package

Package accepts parameters

from Teuchos ParameterLists

Applications using Teuchos
ParameterLists can drive package

Package can be used via Thyra

abstract solver classes

Applications or other packages
using Thyra can use package

Package can use Epetra for

private data.

Package can then use other
packages that understand Epetra

Package accesses solver

services via Thyra interfaces

Package can then use other
packages that implement Thyra
interfaces

Package available via

PyTrilinos

Package can be used with other
Trilinos packages via Python.

13

“Can Use” vs. “Depends On”

“Can Use”

Interoperable without dependence.

Dense is Good.

Encouraged.

“Depends On”

OK, if essential.

Epetra, Teuchos: 9 clients.

Thyra, NOX: 2 clients.

Discouraged.

14

What Trilinos is not …
Trilinos is not a single monolithic piece of software. Each package:

Can be built independent of Trilinos.

Has its own self-contained CVS structure.

Has its own Bugzilla product and mail lists.

Development team is free to make its own decisions about algorithms,

coding style, release contents, testing process, etc.

Trilinos top layer is not a large amount of source code: ~1.5%

Trilinos is not “indivisible”:

You don’t need all of Trilinos to get things done.

Any collection of packages can be combined and distributed.

Upcoming public release contains ~45 of the 50+ Trilinos packages.

15

Whirlwind Tour of Packages

Core Utilities

Discretizations Methods Solvers

16

Interoperable Tools for Rapid Development
of Compatible Discretizations Intrepid

Intrepid offers an innovative software design for compatible discretizations:

 allows access to FEM, FV and FD methods using a common API

 supports hybrid discretizations (FEM, FV and FD) on unstructured grids

 supports a variety of cell shapes:

 standard shapes (e.g. tets, hexes): high-order finite element methods

 arbitrary (polyhedral) shapes: low-order mimetic finite difference methods

 enables optimization, error estimation, V&V, and UQ using fast invasive techniques

(direct support for cell-based derivative computations or via automatic differentiation)

Direct: FV/D

Reconstruction

Cell Data

Reduction

Pullback: FEM

Higher order General cells

k

Forms

d,d*, ,^,(,)

Operations

{C0,C1,C2,C3}
Discrete forms

D,D*,W,M
Discrete ops.

Developers: Pavel Bochev and Denis Ridzal

17

Rythmos

Suite of time integration (discretization) methods

Includes: backward Euler, forward Euler, explicit Runge-Kutta,

and implicit BDF at this time.

Native support for operator split methods.

Highly modular.

Forward sensitivity computations will be included in the first

release with adjoint sensitivities coming in near future.

Developers: Todd Coffey, Roscoe Bartlett

18

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

19

Sacado: Automatic Differentiation

 Efficient OO based AD tools optimized for element-level computations

 Applies AD at “element”-level computation
“Element” means finite element, finite volume, network device,…

 Template application’s element-computation code
Developers only need to maintain one templated code base

 Provides three forms of AD

Forward Mode:

• Propagate derivatives of intermediate variables w.r.t. independent variables forward

• Directional derivatives, tangent vectors, square Jacobians, when m n.

Reverse Mode:

• Propagate derivatives of dependent variables w.r.t. intermediate variables backwards

• Gradients, Jacobian-transpose products (adjoints), when n > m.

Taylor polynomial mode:

Basic modes combined for higher derivatives.

Developers: Eric Phipps, David Gay

20

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

21

Portable utility package of commonly useful tools:

ParameterList class: key/value pair database, recursive capabilities.

LAPACK, BLAS wrappers (templated on ordinal and scalar type).

Dense matrix and vector classes (compatible with BLAS/LAPACK).

FLOP counters, timers.

Ordinal, Scalar Traits support: Definition of ‘zero’, ‘one’, etc.

Reference counted pointers / arrays, and more…

Takes advantage of advanced features of C++:
Templates

Standard Template Library (STL)

Teuchos::ParameterList:
Allows easy control of solver parameters.

XML format input/output.

Developers: Roscoe Barlett, Kevin Long, Heidi Thornquist, Mike Heroux,

 Paul Sexton, Kris Kampshoff, Chris Baker

Teuchos

22

1Petra is Greek for “foundation”.

Trilinos Common Language: Petra

Petra provides a “common language” for distributed

linear algebra objects (operator, matrix, vector)

Petra1 provides distributed matrix and vector services.

Exists in basic form as an object model:

Describes basic user and support classes in UML,

independent of language/implementation.

Describes objects and relationships to build and use

matrices, vectors and graphs.

Has 3 implementations under development.

23

Petra Implementations

 Epetra (Essential Petra):

Current production version.

Restricted to real, double precision arithmetic.

Uses stable core subset of C++ (circa 2000).

Interfaces accessible to C and Fortran users.

 Tpetra (Templated Petra):

Next generation C++ version.

Templated scalar and ordinal fields.

Uses namespaces, and STL: Improved usability/efficiency.

 Jpetra (Java Petra):
Pure Java. Portable to any JVM.

Interfaces to Java versions of MPI, LAPACK and BLAS via interfaces.

Developers: Chris Baker, Mike Heroux, Rob Hoekstra, Alan Williams

24

EpetraExt: Extensions to Epetra

Library of useful classes not needed by everyone

Most classes are types of “transforms”.

Examples:

Graph/matrix view extraction.

Epetra/Zoltan interface.

Explicit sparse transpose.

Singleton removal filter, static condensation filter.

Overlapped graph constructor, graph colorings.

Permutations.

Sparse matrix-matrix multiply.

Matlab, MatrixMarket I/O functions.

Most classes are small, useful, but non-trivial to write.

Developer: Robert Hoekstra, Alan Williams, Mike Heroux

25

Zoltan

Data Services for Dynamic Applications

Dynamic load balancing

Graph coloring

Data migration

Matrix ordering

Partitioners:
Geometric (coordinate-based) methods:

• Recursive Coordinate Bisection (Berger, Bokhari)

• Recursive Inertial Bisection (Taylor, Nour-Omid)

• Space Filling Curves (Peano, Hilbert)

• Refinement-tree Partitioning (Mitchell)

Hypergraph and graph (connectivity-based) methods:
• Hypergraph Repartitioning PaToH (Catalyurek)

• Zoltan Hypergraph Partitioning

• ParMETIS (U. Minnesota)

• Jostle (U. Greenwich)

Developers: Karen Devine, Eric Boman, Robert Heaphy

26

Thyra

High-performance, abstract interfaces for linear algebra

Offers flexibility through abstractions to algorithm developers

Linear solvers (Direct, Iterative, Preconditioners)

Abstraction of basic vector/matrix operations (dot, axpy, mv).

Can use any concrete linear algebra library (Epetra, PETSc, BLAS).

Nonlinear solvers (Newton, etc.)

Abstraction of linear solve (solve Ax=b).

Can use any concrete linear solver library:

• AztecOO, Belos, ML, PETSc, LAPACK

Transient/DAE solvers (implicit)

Abstraction of nonlinear solve.

… and so on.

Developers: Roscoe Bartlett, Kevin Long

27

“Skins”
PyTrilinos provides Python access to Trilinos packages

Uses SWIG to generate bindings.
Epetra, AztecOO, IFPACK, ML, NOX, LOCA, Amesos and
NewPackage are supported.

CTrilinos: C wrapper (mostly to support ForTrilinos).

ForTrilinos: OO Fortran interfaces.

WebTrilinos: Web interface to Trilinos

Generate test problems or read from file.
Generate C++ or Python code fragments and click-run.
Hand modify code fragments and re-run.
Will use during hands-on.

Developers: Ray Tuminaro, Jonathan Hu, and Marzio Sala

Developer: Bill Spotz

Developers: Nicole Lemaster, Damian Rouson

28

Whirlwind Tour of Packages

Discretizations Methods Core Solvers

29

Interface to direct solvers for distributed sparse linear

systems (KLU, UMFPACK, SuperLU, MUMPS, ScaLAPACK)

Challenges:
No single solver dominates

Different interfaces and data formats, serial and parallel

Interface often changes between revisions

Amesos offers:

A single, clear, consistent interface, to various packages

Common look-and-feel for all classes

Separation from specific solver details

Use serial and distributed solvers; Amesos takes care of data

redistribution

Native solvers: KLU and Paraklete

Developers: Ken Stanley, Marzio Sala, Tim Davis

Amesos

30

AztecOO

Krylov subspace solvers: CG, GMRES, Bi-CGSTAB,…

Incomplete factorization preconditioners

Aztec is the workhorse solver at Sandia:

Extracted from the MPSalsa reacting flow code.

Installed in dozens of Sandia apps.

1900+ external licenses.

AztecOO improves on Aztec by:

Using Epetra objects for defining matrix and RHS.

Providing more preconditioners/scalings.

Using C++ class design to enable more sophisticated use.

AztecOO interfaces allows:

Continued use of Aztec for functionality.

Introduction of new solver capabilities outside of Aztec.

Developers: Mike Heroux, Alan Williams, Ray Tuminaro

31

Belos

Next-generation linear solver library, written in templated C++.

Provide a generic framework for developing iterative algorithms for solving large-scale,
linear problems.

Algorithm implementation is accomplished through the use of traits classes and abstract
base classes:

Operator-vector products: Belos::MultiVecTraits, Belos::OperatorTraits

Orthogonalization: Belos::OrthoManager, Belos::MatOrthoManager
Status tests: Belos::StatusTest, Belos::StatusTestResNorm

Iteration kernels: Belos::Iteration
Linear solver managers: Belos::SolverManager

AztecOO provides solvers for Ax=b, what about solvers for:
Simultaneously solved systems w/ multiple-RHS: AX = B
Sequentially solved systems w/ multiple-RHS: AXi = Bi , i=1,…,t
Sequences of multiple-RHS systems: AiXi = Bi , i=1,…,t

Many advanced methods for these types of linear systems
Block methods: block GMRES [Vital], block CG/BICG [O’Leary]

“Seed” solvers: hybrid GMRES [Nachtigal, et al.]

Recycling solvers: recycled Krylov methods [Parks, et al.]

Restarting techniques, orthogonalization techniques, …

Developers: Heidi Thornquist, Mike Heroux, Mike Parks,

 Rich Lehoucq, Teri Barth

32

IFPACK: Algebraic Preconditioners

Overlapping Schwarz preconditioners with incomplete
factorizations, block relaxations, block direct solves.

Accept user matrix via abstract matrix interface (Epetra
versions).

Uses Epetra for basic matrix/vector calculations.

Supports simple perturbation stabilizations and condition
estimation.

Separates graph construction from factorization, improves
performance substantially.

Compatible with AztecOO, ML, Amesos. Can be used by
NOX and ML.

Developers: Marzio Sala, Mike Heroux

33

 : Multi-level Preconditioners

Smoothed aggregation, multigrid and domain decomposition

preconditioning package

Critical technology for scalable performance of some key
apps.

ML compatible with other Trilinos packages:

Accepts user data as Epetra_RowMatrix object (abstract interface).

Any implementation of Epetra_RowMatrix works.

Implements the Epetra_Operator interface. Allows ML preconditioners
to be used with AztecOO, Belos, Anasazi.

Can also be used completely independent of other Trilinos

packages.

Developers: Ray Tuminaro, Jonathan Hu, Marzio Sala

34

Anasazi

Next-generation eigensolver library, written in templated C++.

Provide a generic framework for developing iterative algorithms for solving large-scale
eigenproblems.

Algorithm implementation is accomplished through the use of traits classes and
abstract base classes:

Operator-vector products: Anasazi::MultiVecTraits, Anasazi::OperatorTraits

Orthogonalization: Anasazi::OrthoManager, Anasazi::MatOrthoManager
Status tests: Anasazi::StatusTest, Anasazi::StatusTestResNorm

Iteration kernels: Anasazi::Eigensolver
Eigensolver managers: Anasazi::SolverManager
Eigenproblem: Anasazi::Eigenproblem

Sort managers: Anasazi::SortManager

Currently has solver managers for three eigensolvers:
Block Krylov-Schur

Block Davidson

LOBPCG

Can solve:
standard and generalized eigenproblems

Hermitian and non-Hermitian eigenproblems

real or complex-valued eigenproblems

Developers: Heidi Thornquist, Mike Heroux, Chris Baker,

 Rich Lehoucq, Ulrich Hetmaniuk

35

NOX: Nonlinear Solvers

Suite of nonlinear solution methods

Implementation
• Parallel
• OO-C++
• Independent of the

linear algebra
package!

Jacobian Estimation
• Graph Coloring
• Finite Difference
• Jacobian-Free

Newton-Krylov

Broyden s Method Newton s Method
 Tensor Method

Globalizations
Trust Region

Dogleg
Inexact Dogleg

Line Search
Interval Halving

Quadratic
Cubic

More -Thuente

http://trilinos.sandia.gov/packages/nox

Developers: Tammy Kolda, Roger Pawlowski

36

LOCA

Library of continuation algorithms

Provides

Zero order continuation

First order continuation

Arc length continuation

Multi-parameter continuation (via Henderson's MF Library)

Turning point continuation

Pitchfork bifurcation continuation

Hopf bifurcation continuation

Phase transition continuation

Eigenvalue approximation (via ARPACK or Anasazi)

Developers: Andy Salinger, Eric Phipps

37

MOOCHO & Aristos

MOOCHO: Multifunctional Object-Oriented arCHitecture

for Optimization

Large-scale invasive simultaneous analysis and design

(SAND) using reduced space SQP methods.

Aristos: Optimization of large-scale design spaces

Invasive optimization approach based on full-space SQP

methods.

Efficiently manages inexactness in the inner linear system
solves.

Developer: Denis Ridzal

Developer: Roscoe Bartlett

Full Vertical
Solver Coverage

Bifurcation Analysis LOCA

DAEs/ODEs:

Transient Problems

Rythmos

Eigen Problems:

Linear Equations:

 Linear Problems
AztecOO

Belos
Ifpack, ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:
Distributed Linear Algebra Epetra

Tpetra

Optimization

MOOCHO
Unconstrained:

Constrained:

Nonlinear Problems NOXS
en

si
ti

vi
ti

es
(A

u
to

m
at

ic
 D

if
fe

re
n

ti
at

io
n

:
S

ac
ad

o
)

39

Solver Collaborations:

ANAs, LALs and APPs

Trilinos Strategic Goals

• Scalable Computations: As problem size and processor counts increase,

the cost of the computation will remain nearly fixed.

• Hardened Computations: Never fail unless problem essentially
intractable, in which case we diagnose and inform the user why the problem
fails and provide a reliable measure of error.

• Full Vertical Coverage: Provide leading edge enabling technologies
through the entire technical application software stack: from problem
construction, solution, analysis and optimization.

• Grand Universal Interoperability: All Trilinos packages, and important
external packages, will be interoperable, so that any combination of packages
and external software (e.g., PETSc, Hypre) that makes sense algorithmically
will be possible within Trilinos.

• Universal Accessibility: All Trilinos capabilities will be available to users
of major computing environments: C++, Fortran, Python and the Web, and
from the desktop to the latest scalable systems.

• Universal Solver RAS: Trilinos will be:

– Reliable: Leading edge hardened, scalable solutions for each of these
applications

– Available: Integrated into every major application at Sandia

– Serviceable: Easy to maintain and upgrade within the application
environment.

Algorithmic
Goals

Software
Goals

41

Categories of Abstract Problems

and Abstract Algorithms

Linear Problems:

Linear equations:

Eigen problems:

Nonlinear Problems:

Nonlinear equations:

Stability analysis:

Transient Nonlinear Problems:

DAEs/ODEs:

Optimization Problems:

Unconstrained:

Constrained:

Trilinos Packages

Belos

Anasazi

NOX

LOCA

Aristos

Rythmos

MOOCHO

42

 Abstract Numerical Algorithms

 An abstract numerical algorithm (ANA) is a numerical algorithm that can be

expressed solely in terms of vectors, vector spaces, and linear operators

Example Linear ANA (LANA) : Linear Conjugate Gradients

scalar product
<x,y> defined by
vector space

vector-vector
operations

linear operator
applications

scalar operations

Types of operations Types of objects Linear Conjugate Gradient Algorithm

• ANAs can be very mathematically sophisticated!

• ANAs can be extremely reusable!

43

ANA Linear

Operator

Interface

Solver Software Components

and Interfaces

2) LAL : Linear Algebra Library (e.g. vectors, sparse matrices, sparse factorizations,
preconditioners)

ANA

APP

ANA/APP

Interface

ANA Vector

Interface

1) ANA : Abstract Numerical Algorithm (e.g. linear solvers, eigensolvers, nonlinear
solvers, stability analysis, uncertainty quantification, transient solvers,

optimization etc.)

3) APP : Application (the model: physics, discretization method etc.)

Example Trilinos Packages:

• Belos (linear solvers)

• Anasazi (eigensolvers)

• NOX (nonlinear equations)

• Rhythmos (ODEs,DAEs)

• MOOCHO (Optimization)

• …

Example Trilinos Packages:

• Epetra/Tpetra (Mat,Vec)

• Ifpack, AztecOO, ML (Preconditioners)

• Meros (Preconditioners)

• Pliris (Interface to direct solvers)

• Amesos (Direct solvers)

• Komplex (Complex/Real forms)

• …
Types of Software Components

Thyra

ANA Interfaces to

Linear Algebra

FEI/Thyra

APP to LAL Interfaces Custom/Thyra

LAL to LAL

Interfaces

Thyra::Nonlin

Examples:

• SIERRA

• NEVADA

• Xyce

• Sundance

• …

LAL

Matrix Preconditioner

Vector

Introducing Stratimikos

• Stratimikos created Greek words "stratigiki“ (strategy) and "grammikos“ (linear)

• Defines class Thyra::DefaultLinearSolverBuilder.

• Provides common access to:

• Linear Solvers: Amesos, AztecOO, Belos, …

• Preconditioners: Ifpack, ML, …

• Reads in options through a parameter list (read from XML?)

• Accepts any linear system objects that provide

• Epetra_Operator / Epetra_RowMatrix view of the matrix

• SPMD vector views for the RHS and LHS (e.g. Epetra_[Multi]Vector objects)

• Provides uniform access to linear solver options that can be leveraged across multiple

applications and algorithms

Key Points

• Stratimikos is an important building

block for creating more sophisticated

linear solver capabilities!

Stratimikos Parameter List and Sublists

<ParameterList name=“Stratimikos”>

 <Parameter name="Linear Solver Type" type="string" value=“AztecOO"/>

 <Parameter name="Preconditioner Type" type="string" value="Ifpack"/>

 <ParameterList name="Linear Solver Types">

 <ParameterList name="Amesos">

 <Parameter name="Solver Type" type="string" value="Klu"/>

 <ParameterList name="Amesos Settings">

 <Parameter name="MatrixProperty" type="string" value="general"/>

 ...

 <ParameterList name="Mumps"> ... </ParameterList>

 <ParameterList name="Superludist"> ... </ParameterList>

 </ParameterList>

 </ParameterList>

 <ParameterList name="AztecOO">

 <ParameterList name="Forward Solve">

 <Parameter name="Max Iterations" type="int" value="400"/>

 <Parameter name="Tolerance" type="double" value="1e-06"/>

 <ParameterList name="AztecOO Settings">

 <Parameter name="Aztec Solver" type="string" value="GMRES"/>

 ...

 </ParameterList>

 </ParameterList>

 ...

 </ParameterList>

 <ParameterList name="Belos"> ... </ParameterList>

 </ParameterList>

<ParameterList name="Preconditioner Types">

 <ParameterList name="Ifpack">

 <Parameter name="Prec Type" type="string" value="ILU"/>

 <Parameter name="Overlap" type="int" value="0"/>

 <ParameterList name="Ifpack Settings">

 <Parameter name="fact: level-of-fill" type="int" value="0"/>

 ...

 </ParameterList>

 </ParameterList>

 <ParameterList name="ML"> ... </ParameterList>

 </ParameterList>

</ParameterList>

L
in

e
a
r S

o
lv

e
rs

P

re
c
o

n
d

itio
n

e
rs

Sublists passed

on to package

code!

Top level parameters

Every parameter

and sublist is

handled by Thyra
code and is fully

validated!

46

Trilinos Integration into an

Application

Where to start?

http://trilinos.sandia.gov

Export Makefile System

Once Trilinos is built, how do you link against the application?

There are a number of issues:

• Library link order:

• -lnoxepetra -lnox –lepetra –lteuchos –lblas –llapack

• Consistent compilers:

• g++, mpiCC, icc…

• Consistent build options and package defines:

• g++ -g –O3 –D HAVE_MPI –D _STL_CHECKED

Answer: Export Makefile system

Why Export Makefiles are Important

• The number of packages in Trilinos has exploded.

• As package dependencies (especially optional ones) are
introduced, more maintenance is required by the top-level
packages:

NOX Amesos

EpetraExt

Epetra

Ifpack

ML SuperLU

Direct Dependencies Indirect Dependencies

NOX either must:

• Account for the new libraries in it’s configure script (unscalable)

• Depend on direct dependent packages to supply them through

export makefiles.

New Library New Library

Export Makefiles in Action

#Excerpt from TRILINOS_INSTALL_DIR)/include/Makefile.client.Epetra.

Include the Trilinos export makefile from package=Epetra.
include $(TRILINOS_INSTALL_DIR)/include/Makefile.export.Epetra

Add the Trilinos installation directory to the search paths
for libraries and headers
LIB_PATH = $(TRILINOS_INSTALL_DIR)/lib

INCLUDE_PATH = $(TRILINOS_INSTALL_DIR)/include $(CLIENT_EXTRA_INCLUDES)

Set the C++ compiler and flags to those specified in the export makefile
CXX = $(EPETRA_CXX_COMPILER)

CXXFLAGS = $(EPETRA_CXX_FLAGS)

Add the Trilinos libraries, search path, and rpath to the
linker command line arguments
LIBS = $(CLIENT_EXTRA_LIBS) $(SHARED_LIB_RPATH_COMMAND) \
 $(EPETRA_LIBRARIES) \
 $(EPETRA_TPL_LIBRARIES) $(EPETRA_EXTRA_LD_FLAGS)

Rules for building executables and objects.
%.exe : %.o $(EXTRA_OBJS)
 $(CXX) -o $@ $(LDFLAGS) $(CXXFLAGS) $< $(EXTRA_OBJS) -L$(LIB_PATH) $(LIBS)

%.o : %.cpp
 $(CXX) -c -o $@ $(CXXFLAGS) -I$(INCLUDE_PATH) $(EPETRA_TPL_INCLUDES) $<

50

Concluding Remarks

51

Trilinos / PETSc Interoperability

Epetra_PETScAIJMatrix class

Derives from Epetra_RowMatrix

Wrapper for serial/parallel PETSc aij matrices

Utilizes callbacks for matrix-vector product, getrow

No deep copies

Enables PETSc application to construct and call virtually any
Trilinos preconditioner

ML accepts fully constructed PETSc KSP solvers as smoothers

Fine grid only

Assumes fine grid matrix is really PETSc aij matrix

Complements Epetra_PETScAIJMatrix class
For any smoother with getrow kernel, PETSc implementation should be
much faster than Trilinos

For any smoother with matrix-vector product kernel, PETSc and Trilinos
implementations should be comparable

External Visibility
Awards: R&D 100, HPC SW Challenge (04).

www.cfd-online.com:

Industry Collaborations: Various.

Linux distros: Debian, Mandriva, Ubuntu, Fedora.

SciDAC TOPS-2 partner, EASI (with ORNL, UT-Knoxville, UIUC, UC-Berkeley).

Over 10,000 downloads since March 2005.

Occasional unsolicited external endorsements such as the following two-person exchange on
mathforum.org:

 > The consensus seems to be that OO has little, if anything, to offer

 > (except bloat) to numerical computing.

 I would completely disagree. A good example of using OO in numerics is

 Trilinos: http://software.sandia.gov/trilinos/

Trilinos
A project led by Sandia to develop an object-oriented software framework for scientific

computations.

This is an active project which includes several state-of-the-art solvers and lots of other nice things

a
software engineer writing CFD codes would find useful. Everything is freely available for download

once

you have registered. Very good!

53

Trilinos Availability / Information
Trilinos and related packages are available via LGPL.

Current release (10.0) is “click release”. Unlimited availability.

Trilinos Release 10.1: January 2010.

Trilinos Awards:
2004 R&D 100 Award.
SC2004 HPC Software Challenge Award.

Sandia Team Employee Recognition Award.
Lockheed-Martin Nova Award Nominee.

More information:
http://trilinos.sandia.gov

Annual Forums:
DOE ACTS Tutorial (3rd week in August).

Annual Trilinos User Group Meeting in November @ SNL

• talks available for download

Useful Links

Trilinos website: http://trilinos.sandia.gov

Trilinos tutorial: http://trilinos.sandia.gov/Trilinos10.0Tutorial.pdf

Trilinos mailing lists: http://trilinos.sandia.gov/mail_lists.html

Trilinos User Group (TUG) meetings:

http://trilinos.sandia.gov/events/trilinos_user_group_2008

http://trilinos.sandia.gov/events/trilinos_user_group_2007

54

Trilinos Hands-On Tutorial

http://code.google.com/p/trilinos

55

Teuchos Package

• For many Trilinos packages, this is the only

required or “depends on” package.

• Provides basic utilities:

• Parameter List

• Memory management/Smart Pointer classes

• Command Line Parser

• Templated BLAS/LAPACK interfaces

• XML Parser

• MPI Communicator

56

Parameter List
A key/value pair database that is recursive

Uses an implementation of the boost::Any object

Can read or output to XML files (internal xml or link to external

xml)

Recursive: Sublists – nesting of parameter lists within itself

Primary means of setting parameters in Trilinos packages:

57

Teuchos::ParameterList p;

p.set(“Solver”, “GMRES”);

p.set(“Tolerance”, 1.0e-4);

p.set(“Max Iterations”, 100);

Teuchos::ParameterList& lsParams = p.sublist(“Solver Options”);

lsParams.set(“Fill Factor”, 1);

double tol = p.get<double>(“Tolerance”);

int max_iters = p.get<int>(“Max Iterations”);

int fill = p.sublist(“Solver Options”).get<int>(“Fill Factor”);

Reference Counted Smart Pointer
Powerful memory management for Trilinos packages!

A wrapper for a pointer so that you don’t have to explicity

deallocate the memory.

When last RCP to the object is deleted, the underlying memory is

deallocated.

Next C++ standard will have Boost Smart Pointers

58

class A {

};

int main {

 A* a = new A;

 using namespace Teuchos;

 RCP<A> a = rcp(new A);

 RCP<A> b = a;

}

class A {

};

int main {

 A* a = new A;

 .

 .

 .

 delete a;

}

Teuchos::RCP Technical Report

SAND2007-4078

http://trilinos.sandia.gov/documentation.html

Trilinos/doc/RCPbeginnersGuide

Time Monitor

Timers that keep track of:

Runtime

Number of calls

Time object associates a string name to the timer.
RCP<Time> fill_timer = TimeMonitor::getNewTimer(“Fill Time”);

When TimeMonitor is created, the timer starts:
TimeMonitor tm(Time& t);

When TimeMonitor is destroyed (usually when you leave

scope), the timer stops.

60

Epetra Package

Linear Algebra Package

http://trilinos.sandia.gov/packages/epetra/

61

Typical Flow of Epetra Object

Construction

Construct Comm

Construct Map

Construct x Construct b Construct A

• Any number of Comm objects can exist.

• Comms can be nested (e.g., serial within MPI).

• Maps describe parallel layout.

• Maps typically associated with more than one comp
object.

• Two maps (source and target) define an export/import
object.

• Computational objects.

• Compatibility assured via common map.

// Header files omitted…
int main(int argc, char *argv[]) {

 MPI_Init(&argc,&argv); // Initialize MPI, MpiComm
 Epetra_MpiComm Comm(MPI_COMM_WORLD);

A Simple Epetra/AztecOO Program

 // ***** Create x and b vectors *****

 Epetra_Vector x(Map);
 Epetra_Vector b(Map);

 b.Random(); // Fill RHS with random #s

// ***** Create an Epetra_Matrix tridiag(-1,2,-1) *****

 Epetra_CrsMatrix A(Copy, Map, 3);
 double negOne = -1.0; double posTwo = 2.0;

 for (int i=0; i<NumMyElements; i++) {
 int GlobalRow = A.GRID(i);

 int RowLess1 = GlobalRow - 1;
 int RowPlus1 = GlobalRow + 1;

 if (RowLess1!=-1)
 A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowLess1);
 if (RowPlus1!=NumGlobalElements)

 A.InsertGlobalValues(GlobalRow, 1, &negOne, &RowPlus1);
 A.InsertGlobalValues(GlobalRow, 1, &posTwo, &GlobalRow);

 }
A.FillComplete(); // Transform from GIDs to LIDs

// ***** Map puts same number of equations on each pe *****

 int NumMyElements = 1000 ;
 Epetra_Map Map(-1, NumMyElements, 0, Comm);

 int NumGlobalElements = Map.NumGlobalElements();

// ***** Report results, finish ***********************

 cout << "Solver performed " << solver.NumIters()
 << " iterations." << endl

 << "Norm of true residual = "
 << solver.TrueResidual()
 << endl;

 MPI_Finalize() ;

 return 0;
}

 // ***** Create/define AztecOO instance, solve *****
 AztecOO solver(problem);

 solver.SetAztecOption(AZ_precond, AZ_Jacobi);
 solver.Iterate(1000, 1.0E-8);

// ***** Create Linear Problem *****
 Epetra_LinearProblem problem(&A, &x, &b);

// Header files omitted…
int main(int argc, char *argv[]) {

Epetra_SerialComm Comm();

Petra Implementations

Three version under development:

Epetra (Essential Petra):

Current production version.

Restricted to real, double precision arithmetic.

Uses stable core subset of C++ (circa 2000).

Interfaces accessible to C and Fortran users.

Tpetra (Templated Petra):

Next generation C++ version.

Templated scalar and ordinal fields.

Uses namespaces, and STL: Improved usability/efficiency.

Advanced node architecture, multiprecision support.

Jpetra (Java Petra):

Pure Java. Portable to any JVM.

Interfaces to Java versions of MPI, LAPACK and BLAS via interfaces.

Perform redistribution of distributed objects:

• Parallel permutations.

• “Ghosting” of values for local computations.

• Collection of partial results from remote processors.

Petra Object

Model

Abstract Interface to Parallel Machine

• Shameless mimic of MPI interface.

• Keeps MPI dependence to a single class (through all of Trilinos!).

• Allow trivial serial implementation.

• Opens door to novel parallel libraries (shmem, UPC, etc…)

Abstract Interface for Sparse All-to-All Communication

• Supports construction of pre-recorded “plan” for data-driven communications.

• Examples:

• Supports gathering/scatter of off-processor x/y values when computing y = Ax.

• Gathering overlap rows for Overlapping Schwarz.

• Redistribution of matrices, vectors, etc…

Describes layout of distributed objects:

• Vectors: Number of vector entries on each processor and global ID

• Matrices/graphs: Rows/Columns managed by a processor.

• Called “Maps” in Epetra.

Dense Distributed Vector and Matrices:

• Simple local data structure.

• BLAS-able, LAPACK-able.

• Ghostable, redistributable.

• RTOp-able.

Base Class for All Distributed Objects:

• Performs all communication.

• Requires Check, Pack, Unpack methods from derived class.

Graph class for structure-only computations:

• Reusable matrix structure.

• Pattern-based preconditioners.

• Pattern-based load balancing tools. Basic sparse matrix class:

• Flexible construction process.

• Arbitrary entry placement on parallel machine.

Details about Epetra Maps

Note: Focus on Maps (not BlockMaps).

Getting beyond standard use case…

Note: All of the concepts presented here for Epetra

carry over to Tpetra!

1-to-1 Maps

1-to-1 map (defn): A map is 1-to-1 if each GID appears

only once in the map (and is therefore associated with only

a single processor).

Certain operations in parallel data repartitioning require 1-

to-1 maps. Specifically:

The source map of an import must be 1-to-1.

The target map of an export must be 1-to-1.

The domain map of a 2D object must be 1-to-1.

 The range map of a 2D object must be 1-to-1.

2D Objects: Four Maps

Epetra 2D objects:
CrsMatrix, FECrsMatrix

CrsGraph

VbrMatrix, FEVbrMatrix

Have four maps:

RowMap: On each processor, the GIDs of the rows that processor
will “manage”.

ColMap: On each processor, the GIDs of the columns that
processor will “manage”.

DomainMap: The layout of domain objects
 (the x vector/multivector in y=Ax).

RangeMap: The layout of range objects
 (the y vector/multivector in y=Ax).

Must be 1-to-1 maps!!!

Typically a 1-to-1 map

Typically NOT a 1-to-1 map

Sample Problem

=

y A x

Case 1: Standard Approach

RowMap = {0, 1}

ColMap = {0, 1, 2}

DomainMap = {0, 1}

RangeMap = {0, 1}

First 2 rows of A, elements of y and elements of x, kept on PE 0.

Last row of A, element of y and element of x, kept on PE 1.

PE 0 Contents PE 1 Contents

RowMap = {2}

ColMap = {1, 2}

DomainMap = {2}

RangeMap = {2}

Notes:

Rows are wholly owned.

RowMap=DomainMap=RangeMap (all 1-to-1).

ColMap is NOT 1-to-1.

Call to FillComplete: A.FillComplete(); // Assumes

=

y A x

Original Problem

Case 2: Twist 1

RowMap = {0, 1}

ColMap = {0, 1, 2}

DomainMap = {1, 2}

RangeMap = {0}

First 2 rows of A, first element of y and last 2 elements of x, kept on PE 0.

Last row of A, last 2 element of y and first element of x, kept on PE 1.

PE 0 Contents PE 1 Contents

RowMap = {2}

ColMap = {1, 2}

DomainMap = {0}

RangeMap = {1, 2}

Notes:

Rows are wholly owned.

RowMap is NOT = DomainMap

 is NOT = RangeMap (all 1-to-1).

ColMap is NOT 1-to-1.

Call to FillComplete:

A.FillComplete(DomainMap, RangeMap);

=

y A x

Original Problem

Case 2: Twist 2

RowMap = {0, 1}

ColMap = {0, 1}

DomainMap = {1, 2}

RangeMap = {0}

First row of A, part of second row of A, first element of y and last 2 elements of x,
kept on PE 0.

Last row, part of second row of A, last 2 element of y and first element of x, kept on
PE 1.

PE 0 Contents PE 1 Contents

RowMap = {1, 2}

ColMap = {1, 2}

DomainMap = {0}

RangeMap = {1, 2}

Notes:

Rows are NOT wholly owned.

RowMap is NOT = DomainMap

 is NOT = RangeMap (all 1-to-1).

RowMap and ColMap are NOT 1-to-1.

Call to FillComplete:

A.FillComplete(DomainMap, RangeMap); =

y A x

Original Problem

What does FillComplete Do?

A bunch of stuff.

One task is to create (if needed) import/export

objects to support distributed matrix-vector

multiplication:

If ColMap DomainMap, create Import object.

If RowMap RangeMap, create Export object.

A few rules:

Rectangular matrices will always require:

A.FillComplete(DomainMap,RangeMap);

DomainMap and RangeMap must be 1-to-1.

Linear System Solves

AztecOO

Aztec is the previous workhorse solver at Sandia:

Extracted from the MPSalsa reacting flow code.

Installed in dozens of Sandia apps.

AztecOO leverages the investment in Aztec:

Uses Aztec iterative methods and preconditioners.

AztecOO improves on Aztec by:

Using Epetra objects for defining matrix and RHS.

Providing more preconditioners/scalings.

Using C++ class design to enable more sophisticated use.

AztecOO interfaces allows:

Continued use of Aztec for functionality.

Introduction of new solver capabilities outside of Aztec.

Belos is coming along as alternative.

AztecOO will not go away.

Will encourage new efforts and refactorings to use Belos.

AztecOO Extensibility

AztecOO is designed to accept externally defined:

Operators (both A and M):

• The linear operator A is accessed as an Epetra_Operator.

• Users can register a preconstructed preconditioner as an

Epetra_Operator.

RowMatrix:

• If A is registered as a RowMatrix, Aztec’s preconditioners are

accessible.

• Alternatively M can be registered separately as an Epetra_RowMatrix,

and Aztec’s preconditioners are accessible.

StatusTests:

• Aztec’s standard stopping criteria are accessible.

• Can override these mechanisms by registering a StatusTest Object.

AztecOO understands Epetra_Operator

AztecOO is designed to

accept externally defined:

Operators (both A and M).

RowMatrix (Facilitates use

of AztecOO preconditioners

with external A).

StatusTests (externally-

defined stopping criteria).

78

Next generation linear solver / eigensolver library, written in
templated C++.
Provide a generic interface to a collection of algorithms for
solving large-scale linear problems / eigenproblems.
Algorithm implementation is accomplished through the use of
traits classes and abstract base classes:

e.g.: MultiVecTraits, OperatorTraits
e.g.: SolverManager, Eigensolver / Iteration, Eigenproblem/
LinearProblem, StatusTest, OrthoManager, OutputManager

Includes block linear solvers / eigensolvers:
Higher operator performance.
More reliable.

Solves:
 AX = X or AX = BX (Anasazi)
 AX = B (Belos)

79

Block Solvers (in general):

Achieve better performance for operator-vector products.

Block Eigensolvers (Op(A)X = LX):

Block Linear Solvers (Op(A)X = B):

 Reliably determine multiple and/or clustered eigenvalues.

 Example applications: Modal analysis, stability analysis,

 bifurcation analysis (LOCA)

 Useful for when multiple solutions are required for the same

system of equations.

 Example applications:

• Perturbation analysis

• Optimization problems

• Single right-hand sides where A has a handful of small eigenvalues

• Inner-iteration of block eigensolvers

80

Belos and Anasazi are solver libraries that:

1. Provide an abstract interface to an operator-vector products,

scaling, and preconditioning.
2. Allow the user to enlist any linear algebra package for the

elementary vector space operations essential to the

algorithm. (Epetra, PETSc, etc.)
3. Allow the user to define convergence of any algorithm (a.k.a.

status testing).
4. Allow the user to determine the verbosity level, formatting,

and processor for the output.
5. Allow these decisions to be made at runtime.

6. Allow for easier creation of new solvers through “managers”

using “iterations” as the basic kernels.

81

Eigenproblem/ LinearProblem Class
Describes the problem and stores the answer

Eigensolver / Linear Solver Manager (SolverManager) Class
Parameter list driven strategy object describing behavior of solver

Eigensolver / Iteration Class
Provide basic iteration interface.

MultiVecTraits and OperatorTraits
Traits classes for interfacing linear algebra

SortManagerClass [Anasazi only]
Allows selection of desired eigenvalues

OrthoManagerClass
Provide basic interface for orthogonalization

StatusTestClass
Control testing of convergence, etc.

OutputManagerClass
Control verbosity and printing in a MP scenario

82

Anasazi (Trilinos Release 8.0):

Solvers: Block Krylov-Schur, Block Davidson, LOBPCG

Can solve standard and generalized eigenproblems

Can solve Hermitian and non-Hermitian eigenproblems

Can target largest or smallest eigenvalues

Block size is independent of number of requested eigenvalues

Belos (Trilinos Release 8.0):

Solvers: CG, BlockCG, BlockGMRES, BlockFGMRES, GCRO-DR

Belos::EpetraOperator, Thyra::LOWS, and Stratimikos interface
allows for integration into other codes

Block size is independent of number of right-hand sides

Linear algebra adapters for Epetra, NOX/LOCA, and Thyra

Epetra interface accepts Epetra_Operators, so can be used with
ML, AztecOO, Ifpack, Belos, etc…

Configurable via Teuchos::ParameterList

Preconditioning

84

 : AMG for Magnetics Simulations

Efficient solution critical to HEDP Z-pinch simulations

Challenges:

Standard solvers do not converge

Large near null space of curl

Conductivity variation

Mesh stretching

Two Sandia AMG methods for eddy current eqns:

(2002) Specialized AMG satisfying commutating relationship

(2006) Implicitly reformulate (*) and leverage ML standard AMG:

()

85

 : Scaling on Red Storm

10 times steps

Chebyshev polynomial smoother

Parallel load-balancing via Zoltan

Processors

S
o
lv

e
 T

im
e

S
o
lv

e
 T

im
e

Previous
AMG

New AMG

10k 20k

86

 : AMG for non-symmetric

systems
For many applications, A AT

Symmetric AMG methods ineffective or diverge

Non-symmetric AMG theory doesn’t exist

ML has new AMG method for A AT that minimizes basis
function energy (Tuminaro & Sala)

Charon drift-diffusion (P. Lin, J. Shadid, et al.)

Scalability
(MHD Pump, Cray XT3)

Preconditioners

• 1-level ILU(2,1)

• 1-level ILU(2,3)
• 1-level ILU(2,7)

• 3-level ML(NSA,Gal)

• 3-level ML(EMIN, PG)

ML: Tuminaro, Hu

Ifpack: Heroux

By

Velocity

MHD

Pump

Scalability
(MHD Pump, Cray XT3)

~20x

Multicore

(Inter-core comm. with MPI)

Nodes Cores
per

node

Compute Jac+Prec Linear Solve Total

Time (sec) Eff. Time (sec) Eff. Time (sec) Eff.

4096 1 16.9 ------- 4.3 ------- 21.2 ------

2048 2 18.2 93% 4.5 95% 22.6 94%

1024 4 17.7 95% 4.9 88% 22.6 94%

Multi-core Efficiency Study

New 2.2 GHz Quad Cores

Cray XT3/4 (09/29/08)

Total of 4096 cores

12800x1280 mesh: ~65M

unknowns; Agg = 33;

Coarse Operator: ~60K

unknowns

ML: V(1,1) with ILU(1,2)/

ILU(1,2)/KLU and Petrov-

Galerkin Projection

Our Largest Steady-state Simulation to Date:

1+ Billion unknowns
250 Million Quad elements

24,000 cores Cray XT3/4
Newton-GMRES / ML: PG-AMG 4 level

18 Newton steps

86 Avg. No. Linear Its. / Newton step
33 min. for solution

Nonlinear System Solves

91

NOX and LOCA are a combined package for solving and
analyzing sets of nonlinear equations.

 NOX: Globalized Newton-based solvers.

 LOCA: Continuation, Stability, and Bifurcation Analysis.

We define the nonlinear problem:

is the residual or function evaluation

is the solution vector

is the Jacobian Matrix defined by:

NOX/LOCA: Nonlinear Solver

and Analysis Algorithms

92

Broyden s Method

Newton s Method

 Tensor Method

Iterative Linear Solvers: Adaptive Forcing Terms
Jacobian-Free Newton-Krylov

Jacobian Estimation: Colored Finite Difference

Line Search
Interval Halving

Quadratic
Cubic

More -Thuente
Curvilinear (Tensor)

Homotopy
Artificial Parameter Continuation
Natural Parameter Continuation

Trust Region
Dogleg

Inexact Dogleg

Globalizations

Nonlinear Solver Algorithms

Stopping Criteria

(Status Test)

Example: Newton’s Method for F (x) = 0

Choose an initial guess x0

For k = 0,1,2,...

Compute Fk = F (xk)

Compute Jk where

(Jk)ij = F i(xk)/ x j

Let dk = -Jk
-1 Fk

(Optional) Let k be a calculated

step length

Set xk+1 = xk + kdk

Test for Convergence or

Failure

Calculating

the Direction

Damping or

Line Search

Iterate Control

(Solver)

Building Blocks of NOX

Stopping Criteria
(StatusTests)

Building a Status Test

• Fail if value of becomes Nan or Inf

NOX::StatusTest::FiniteValue finiteValueTest;

FiniteValue: finiteValueTest

• Fail if we reach maximum iterations

• Converge if both:

MaxIters: maxItersTest

NOX::StatusTest::MaxIters maxItersTest(200);

normFTest

NOX::StatusTest::NormF normFTest();

normWRMSTest

NOX::StatusTest::NormWRMS normWRMSTest();

Combo(AND): convergedTest

NOX::StatusTest::Combo convergedTest(NOX::StatusTest::Combo::AND);

Combo(OR)

allTests

NOX::StatusTest::Combo allTests(NOX::StatusTest::Combo::OR);

allTests.addStatusTest(finiteValueTest);

allTests.addStatusTest(maxItersTest);

allTests.addStatusTest(convergedTest);

convergedTest.addStatusTest(normFTest);

convergedTest.addStatusTest(normWRMSTest);

Status Tests Continued

User Defined are Derived from NOX::StatusTest::Generic

NOX::StatusTest::StatusType checkStatus(const NOX::Solver::Generic &problem)

NOX::StatusTest::StatusType
checkStatusEfficiently(const NOX::Solver::Generic &problem,
 NOX::StatusTest::CheckType checkType)

NOX::StatusTest::StatusType getStatus() const

ostream& print(ostream &stream, int indent=0) const

-- Status Test Results --

**...........OR Combination ->

 **...........AND Combination ->

 **...........F-Norm = 5.907e-01 < 1.000e-08

 (Length-Scaled Two-Norm, Absolute Tolerance)

 **...........WRMS-Norm = 4.794e+01 < 1

 (Min Step Size: 1.000e+00 >= 1)

 (Max Lin Solv Tol: 1.314e-15 < 0.5)

 **...........Finite Number Check (Two-Norm F) = Finite

 **...........Number of Iterations = 2 < 200

-- Final Status Test Results --

Converged....OR Combination ->

 Converged....AND Combination ->

 Converged....F-Norm = 3.567e-13 < 1.000e-08

 (Length-Scaled Two-Norm, Absolute Tolerance)

 Converged....WRMS-Norm = 1.724e-03 < 1

 (Min Step Size: 1.000e+00 >= 1)

 (Max Lin Solv Tol: 4.951e-14 < 0.5)

 ??...........Finite Number Check (Two-Norm F) = Unknown

 ??...........Number of Iterations = -1 < 200

97

NOX Interface

Group Vector

computeF() innerProduct()

computeJacobian() scale()

applyJacobianInverse() norm()

update()

NOX solver methods are ANAs, and are implemented in terms
of group/vector abstract interfaces:

NOX solvers will work with any group/vector that implements
these interfaces.

Four concrete implementations are supported:
1. LAPACK

2. EPETRA
3. PETSc

4. Thyra (Release 8.0)

NOX Interface

Solver

Layer

Abstract Vector & Abstract Group
Abstract

Layer

Solvers

- Line Search
- Trust Region Directions

- e.g., Newton

Line Searches

- e.g., Polynomial

Status Tests

- e.g., Norm F

• Don’t need to directly access the vector or matrix entries, only

manipulate the objects.

• NOX uses an abstract interface to manipulate linear algebra objects.

• Isolate the Solver layer from the linear algebra implementations used by

the application.

• This approach means that NOX does NOT rely on any specific linear

algebra format.

• Allows the apps to tailor the linear algebra to their own needs!

– Serial or Parallel

– Any Storage format: User Defined, LAPACK, PETSc, Epetra

NOX Framework

Solver

Layer

Abstract Vector & Abstract Group
Abstract

Layer

Linear

Algebra

Interface

Implementations

- EPetra
- PETSc

- LAPACK
- USER DEFINED

EPetra Dependent Features

- Jacobian-Free Newton-Krylov
- Preconditioning

- Graph Coloring / Finite Diff.

Solvers

- Line Search
- Trust Region Directions

- e.g., Newton

Line Searches

- e.g., Polynomial

Status Tests

- e.g., Norm F

Application

Interface

Layer

User Interface

- Compute F
- Compute Jacobian

- Compute Preconditioner

The Epetra “Goodies”

• Matrix-Free Newton-Krylov Operator

• Derived from Epetra_Operator
• Can be used to estimate Jacobian action on a

vector
• NOX::Epetra::MatrixFree

• Finite Difference Jacobian
• Derived from an Epetra_RowMatrix

• Can be used as a preconditioner matrix
• NOX::Epetra::FiniteDifference

• Graph Colored Finite Difference Jacobian
• Derived from NOX::Epetra::FiniteDifference

• Fast Jacobian fills – need connectivity/coloring
graph

• (NOX::Epetra::FiniteDifferenceColoring)

• Full interface to AztecOO using NOX parameter list

• Preconditioners: internal AztecOO, Ifpack, User defined
• Scaling object

